Enhancing Knowledge Graph Embedding Models with Semantic-driven Loss Functions

Authors: Nicolas Hubert, Pierre Monnin, Armelle Brun, Davy Monticolo

Abstract: Knowledge graph embedding models (KGEMs) are used for various tasks related to knowledge graphs (KGs), including link prediction. They are trained with loss functions that are computed considering a batch of scored triples and their corresponding labels. Traditional approaches consider the label of a triple to be either true or false. However, recent works suggest that all negative triples should not be valued equally. In line with this recent assumption, we posit that semantically valid negative triples might be high-quality negative triples. As such, loss functions should treat them differently from semantically invalid negative ones. To this aim, we propose semantic-driven versions for the three main loss functions for link prediction. In particular, we treat the scores of negative triples differently by injecting background knowledge about relation domains and ranges into the loss functions. In an extensive and controlled experimental setting, we show that the proposed loss functions systematically provide satisfying results on three public benchmark KGs underpinned with different schemas, which demonstrates both the generality and superiority of our proposed approach. In fact, the proposed loss functions do (1) lead to better MRR and Hits@$10$ values, (2) drive KGEMs towards better semantic awareness. This highlights that semantic information globally improves KGEMs, and thus should be incorporated into loss functions. Domains and ranges of relations being largely available in schema-defined KGs, this makes our approach both beneficial and widely usable in practice.

Submitted to arXiv on 01 Mar. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.