Convolutional Visual Prompt for Robust Visual Perception

Authors: Yun-Yun Tsai, Chengzhi Mao, Junfeng Yang

License: CC BY 4.0

Abstract: Vision models are often vulnerable to out-of-distribution (OOD) samples without adapting. While visual prompts offer a lightweight method of input-space adaptation for large-scale vision models, they rely on a high-dimensional additive vector and labeled data. This leads to overfitting when adapting models in a self-supervised test-time setting without labels. We introduce convolutional visual prompts (CVP) for label-free test-time adaptation for robust visual perception. The structured nature of CVP demands fewer trainable parameters, less than 1\% compared to standard visual prompts, combating overfitting. Extensive experiments and analysis on a wide variety of OOD visual perception tasks show that our approach is effective, improving robustness by up to 5.87% over several large-scale models.

Submitted to arXiv on 01 Mar. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.