Combined effects of heat loss and curvature on turbulent flame-wall interaction in a premixed dimethyl ether/air flame
Authors: Driss Kaddar, Matthias Steinhausen, Thorsten Zirwes, Henning Bockhorn, Christian Hasse, Federica Ferraro
Abstract: This study investigates the effects of curvature on the local heat release rate and mixture fraction during turbulent flame-wall interaction of a lean dimethyl ether/air flame using a fully resolved simulation with a reduced skeletal chemical reaction mechanism and mixture-averaged transport. The region in which turbulent flame-wall interaction affects the flame is found to be restricted to a wall distance less than twice the laminar flame thickness. In regions without heat losses, heat release rate and curvature, as well as mixture fraction and curvature, are negatively correlated, which is in accordance with experimental findings. Flame-wall interaction alters the correlation between heat release rate and curvature. An inversion in the sign of the correlation from negative to positive is observed as the flame starts to experience heat losses to the wall. The correlation between mixture fraction and curvature, however, is unaffected by flame-wall interactions and remains negative. Similarly to experimental findings, the investigated turbulent side-wall quenching flame shows both head-on quenching and side-wall quenching-like behavior. The different quenching events are associated with different curvature values in the near-wall region. Furthermore, for medium heat loss, the correlations between heat release rate and curvature are sensitive to the quenching scenario.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.