Learnable Topological Features for Phylogenetic Inference via Graph Neural Networks

Authors: Cheng Zhang

ICLR 2023
License: CC BY 4.0

Abstract: Structural information of phylogenetic tree topologies plays an important role in phylogenetic inference. However, finding appropriate topological structures for specific phylogenetic inference tasks often requires significant design effort and domain expertise. In this paper, we propose a novel structural representation method for phylogenetic inference based on learnable topological features. By combining the raw node features that minimize the Dirichlet energy with modern graph representation learning techniques, our learnable topological features can provide efficient structural information of phylogenetic trees that automatically adapts to different downstream tasks without requiring domain expertise. We demonstrate the effectiveness and efficiency of our method on a simulated data tree probability estimation task and a benchmark of challenging real data variational Bayesian phylogenetic inference problems.

Submitted to arXiv on 17 Feb. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.