That Escalated Quickly: An ML Framework for Alert Prioritization

Authors: Ben Gelman, Salma Taoufiq, Tamás Vörös, Konstantin Berlin

Submitted to Usenix Security Symposium
License: CC BY-NC-SA 4.0

Abstract: In place of in-house solutions, organizations are increasingly moving towards managed services for cyber defense. Security Operations Centers are specialized cybersecurity units responsible for the defense of an organization, but the large-scale centralization of threat detection is causing SOCs to endure an overwhelming amount of false positive alerts -- a phenomenon known as alert fatigue. Large collections of imprecise sensors, an inability to adapt to known false positives, evolution of the threat landscape, and inefficient use of analyst time all contribute to the alert fatigue problem. To combat these issues, we present That Escalated Quickly (TEQ), a machine learning framework that reduces alert fatigue with minimal changes to SOC workflows by predicting alert-level and incident-level actionability. On real-world data, the system is able to reduce the time it takes to respond to actionable incidents by $22.9\%$, suppress $54\%$ of false positives with a $95.1\%$ detection rate, and reduce the number of alerts an analyst needs to investigate within singular incidents by $14\%$.

Submitted to arXiv on 13 Feb. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.