Personalized Understanding of Blood Glucose Dynamics via Mobile Sensor Data

Authors: Sam Royston

Technical Report, 9 Pages

Abstract: Continuous Blood Glucose (CGM) monitors have revolutionized the ability of diabetics to manage their blood glucose, and paved the way for artificial pancreas systems. In this paper we augment CGM data with sensor input collected by a smart phone and use it to provide analytical tools for patients and clinicians. We collected GPS data, activity classifications, and blood glucose data with a custom iOS application over a 9 month period from a single free-living type-1 diabetic patient. This data set is novel in terms of it's size, the inclusion of GPS data, and the fact that it was collected non-intrusively from a free-living patient. We describe a method to measure the occurrence of lifestyle \textit{events} based on GPS and activity data, and show that they can capture instances of food consumption and are therefore correlated to changes in blood glucose. Finally, we incorporate these event representations into our system to create useful visualizations and notifications to aid patients in managing their diabetes.

Submitted to arXiv on 02 Feb. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.