Neural Gas Network Image Features and Segmentation for Brain Tumor Detection Using Magnetic Resonance Imaging Data
Authors: S. Muhammad Hossein Mousavi
Abstract: Accurate detection of brain tumors could save lots of lives and increasing the accuracy of this binary classification even as much as a few percent has high importance. Neural Gas Networks (NGN) is a fast, unsupervised algorithm that could be used in data clustering, image pattern recognition, and image segmentation. In this research, we used the metaheuristic Firefly Algorithm (FA) for image contrast enhancement as pre-processing and NGN weights for feature extraction and segmentation of Magnetic Resonance Imaging (MRI) data on two brain tumor datasets from the Kaggle platform. Also, tumor classification is conducted by Support Vector Machine (SVM) classification algorithms and compared with a deep learning technique plus other features in train and test phases. Additionally, NGN tumor segmentation is evaluated by famous performance metrics such as Accuracy, F-measure, Jaccard, and more versus ground truth data and compared with traditional segmentation techniques. The proposed method is fast and precise in both tasks of tumor classification and segmentation compared with other methods. A classification accuracy of 95.14 % and segmentation accuracy of 0.977 is achieved by the proposed method.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.