Design aesthetics recommender system based on customer profile and wanted affect

Authors: Brahim Benaissa, Masakazu Kobayashi, Keita Kinoshita

11 pages, 10 figures, peer-reviewed at the KEER 2022 conference
License: CC BY-NC-ND 4.0

Abstract: Product recommendation systems have been instrumental in online commerce since the early days. Their development is expanded further with the help of big data and advanced deep learning methods, where consumer profiling is central. The interest of the consumer can now be predicted based on the personal past choices and the choices of similar consumers. However, what is currently defined as a choice is based on quantifiable data, like product features, cost, and type. This paper investigates the possibility of profiling customers based on the preferred product design and wanted affects. We considered the case of vase design, where we study individual Kansei of each design. The personal aspects of the consumer considered in this study were decided based on our literature review conclusions on the consumer response to product design. We build a representative consumer model that constitutes the recommendation system's core using deep learning. It asks the new consumers to provide what affect they are looking for, through Kansei adjectives, and recommend; as a result, the aesthetic design that will most likely cause that affect.

Submitted to arXiv on 26 Jan. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.