Fiduciary Responsibility: Facilitating Public Trust in Automated Decision Making

Authors: Shannon B. Harper, Eric S. Weber

License: CC BY 4.0

Abstract: Automated decision-making systems are being increasingly deployed and affect the public in a multitude of positive and negative ways. Governmental and private institutions use these systems to process information according to certain human-devised rules in order to address social problems or organizational challenges. Both research and real-world experience indicate that the public lacks trust in automated decision-making systems and the institutions that deploy them. The recreancy theorem argues that the public is more likely to trust and support decisions made or influenced by automated decision-making systems if the institutions that administer them meet their fiduciary responsibility. However, often the public is never informed of how these systems operate and resultant institutional decisions are made. A ``black box'' effect of automated decision-making systems reduces the public's perceptions of integrity and trustworthiness. The result is that the public loses the capacity to identify, challenge, and rectify unfairness or the costs associated with the loss of public goods or benefits. The current position paper defines and explains the role of fiduciary responsibility within an automated decision-making system. We formulate an automated decision-making system as a data science lifecycle (DSL) and examine the implications of fiduciary responsibility within the context of the DSL. Fiduciary responsibility within DSLs provides a methodology for addressing the public's lack of trust in automated decision-making systems and the institutions that employ them to make decisions affecting the public. We posit that fiduciary responsibility manifests in several contexts of a DSL, each of which requires its own mitigation of sources of mistrust. To instantiate fiduciary responsibility, a Los Angeles Police Department (LAPD) predictive policing case study is examined.

Submitted to arXiv on 06 Jan. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.