Learning from What is Already Out There: Few-shot Sign Language Recognition with Online Dictionaries
Authors: Matyáš Boháček, Marek Hrúz
Abstract: Today's sign language recognition models require large training corpora of laboratory-like videos, whose collection involves an extensive workforce and financial resources. As a result, only a handful of such systems are publicly available, not to mention their limited localization capabilities for less-populated sign languages. Utilizing online text-to-video dictionaries, which inherently hold annotated data of various attributes and sign languages, and training models in a few-shot fashion hence poses a promising path for the democratization of this technology. In this work, we collect and open-source the UWB-SL-Wild few-shot dataset, the first of its kind training resource consisting of dictionary-scraped videos. This dataset represents the actual distribution and characteristics of available online sign language data. We select glosses that directly overlap with the already existing datasets WLASL100 and ASLLVD and share their class mappings to allow for transfer learning experiments. Apart from providing baseline results on a pose-based architecture, we introduce a novel approach to training sign language recognition models in a few-shot scenario, resulting in state-of-the-art results on ASLLVD-Skeleton and ASLLVD-Skeleton-20 datasets with top-1 accuracy of $30.97~\%$ and $95.45~\%$, respectively.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.