iCardo: A Machine Learning Based Smart Healthcare Framework for Cardiovascular Disease Prediction
Authors: Nidhi Sinha, Teena Jangid, Amit M. Joshi, Saraju P. Mohanty
Abstract: The point of care services and medication have become simpler with efficient consumer electronics devices in a smart healthcare system. Cardiovascular disease is a critical illness which causes heart failure, and early and prompt identification can lessen damage and prevent premature mortality. Machine learning has been used to predict cardiovascular disease (CVD) in the literature. The article explains choosing the best classifier model for the selected feature sets and the distinct feature sets selected using four feature selection models. The paper compares seven classifiers using each of the sixteen feature sets. Originally, the data had 56 attributes and 303 occurrences, of which 87 were in good health, and the remainder had cardiovascular disease (CVD). Demographic data with several features make up the four groups of overall features. Lasso, Tree-based algorithms, Chi-Square and RFE have all been used to choose the four distinct feature sets, each containing five, ten, fifteen, and twenty features, respectively. Seven distinct classifiers have been trained and evaluated for each of the sixteen feature sets. To determine the most effective blend of feature set and model, a total of 112 models have been trained, tested, and their performance has been compared. SVM classifier with fifteen chosen features is shown to be the best in terms of overall accuracy. The healthcare data has been maintained in the cloud and would be accessible to patients, caretakers, and healthcare providers through integration with the Internet of Medical Things (IoMT) enabled smart healthcare. Subsequently, the feature selection model chooses the most appropriate feature for CVD prediction to calibrate the system, and the proposed framework can be utilised to anticipate CVD.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.