Controlling inversion and time-reversal symmetries by subcycle pulses in the one-dimensional extended Hubbard model

Authors: Kazuya Shinjo, Shigetoshi Sota, Seiji Yunoki, Takami Tohyama

Phys. Rev. B 107, 195103 (2023)
arXiv: 2211.08694v2 - DOI (cond-mat.str-el)
8 pages, 7 figures

Abstract: Owning to their high controllability, laser pulses have contributed greatly to our understanding of strongly correlated electron systems. However, typical multicycle pulses do not control the symmetry of systems that plays an important role in the emergence of novel quantum phases. Here, we demonstrate that subcycle pulses whose oscillation is less than one period within a pulse envelope can control inversion and time-reversal symmetries in the electronic states of the one-dimensional extended Hubbard model. Using an ultrashort subcycle pulse, one can generate a steady electric current (SEC) in a photoexcited state due to an Aharonov-Bohm flux instantaneously introduced through the phase of an electric field. Consequently, time-reversal symmetry is broken. In contrast, a broad subcycle pulse does not induce SEC but instead generates electric polarization, thus breaking inversion symmetry. Both symmetry breakings in a photoexcited state can be monitored by second harmonic generation. These findings provide a new methodology for designing the symmetries of electronic states and open up a new field of subcycle-pulse engineering.

Submitted to arXiv on 16 Nov. 2022

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.