Review and Analysis of Pain Research Literature through Keyword Co-occurrence Networks

Authors: Burcu Ozek, Zhenyuan Lu, Fatemeh Pouromran, Sagar Kamarthi

License: CC BY 4.0

Abstract: Pain is a significant public health problem as the number of individuals with a history of pain globally keeps growing. In response, many synergistic research areas have been coming together to address pain-related issues. This work conducts a review and analysis of a vast body of pain-related literature using the keyword co-occurrence network (KCN) methodology. In this method, a set of KCNs is constructed by treating keywords as nodes and the co-occurrence of keywords as links between the nodes. Since keywords represent the knowledge components of research articles, analysis of KCNs will reveal the knowledge structure and research trends in the literature. This study extracted and analyzed keywords from 264,560 pain-related research articles indexed in IEEE, PubMed, Engineering Village, and Web of Science published between 2002 and 2021. We observed rapid growth in pain literature in the last two decades: the number of articles has grown nearly threefold, and the number of keywords has grown by a factor of 7. We identified emerging and declining research trends in sensors/methods, biomedical, and treatment tracks. We also extracted the most frequently co-occurring keyword pairs and clusters to help researchers recognize the synergies among different pain-related topics.

Submitted to arXiv on 08 Nov. 2022

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.