Wind Power Forecasting Considering Data Privacy Protection: A Federated Deep Reinforcement Learning Approach
Authors: Yang Li, Ruinong Wang, Yuanzheng Li, Meng Zhang, Chao Long
Abstract: In a modern power system with an increasing proportion of renewable energy, wind power prediction is crucial to the arrangement of power grid dispatching plans due to the volatility of wind power. However, traditional centralized forecasting methods raise concerns regarding data privacy-preserving and data islands problem. To handle the data privacy and openness, we propose a forecasting scheme that combines federated learning and deep reinforcement learning (DRL) for ultra-short-term wind power forecasting, called federated deep reinforcement learning (FedDRL). Firstly, this paper uses the deep deterministic policy gradient (DDPG) algorithm as the basic forecasting model to improve prediction accuracy. Secondly, we integrate the DDPG forecasting model into the framework of federated learning. The designed FedDRL can obtain an accurate prediction model in a decentralized way by sharing model parameters instead of sharing private data which can avoid sensitive privacy issues. The simulation results show that the proposed FedDRL outperforms the traditional prediction methods in terms of forecasting accuracy. More importantly, while ensuring the forecasting performance, FedDRL can effectively protect the data privacy and relieve the communication pressure compared with the traditional centralized forecasting method. In addition, a simulation with different federated learning parameters is conducted to confirm the robustness of the proposed scheme.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.