Grokking phase transitions in learning local rules with gradient descent
Authors: Bojan Žunkovič, Enej Ilievski
Abstract: We discuss two solvable grokking (generalisation beyond overfitting) models in a rule learning scenario. We show that grokking is a phase transition and find exact analytic expressions for the critical exponents, grokking probability, and grokking time distribution. Further, we introduce a tensor-network map that connects the proposed grokking setup with the standard (perceptron) statistical learning theory and show that grokking is a consequence of the locality of the teacher model. As an example, we analyse the cellular automata learning task, numerically determine the critical exponent and the grokking time distributions and compare them with the prediction of the proposed grokking model. Finally, we numerically analyse the connection between structure formation and grokking.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.