The Virality of Hate Speech on Social Media
Authors: Abdurahman Maarouf, Nicolas Pröllochs, Stefan Feuerriegel
Abstract: Online hate speech is responsible for violent attacks such as, e.g., the Pittsburgh synagogue shooting in 2018, thereby posing a significant threat to vulnerable groups and society in general. However, little is known about what makes hate speech on social media go viral. In this paper, we collected N = 25,219 Twitter cascades with 65,946 retweets and classify them as hateful vs. normal. Using a generalized linear regression, we then estimate differences in the spread of hateful vs. normal content based on author and content variables. We thereby identify important determinants that explain differences in the spreading of hateful vs. normal content. For example, hateful content authored by verified users is disproportionally more likely to go viral than hateful content from non-verified ones: hateful content from a verified user (as opposed to normal content) has a 3.5 times larger cascade size, a 3.2 times longer cascade lifetime, and a 1.2 times larger structural virality. Altogether, we offer novel insights into the virality of hate speech on social media.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.