Model-Free Sequential Testing for Conditional Independence via Testing by Betting
Authors: Shalev Shaer, Gal Maman, Yaniv Romano
Abstract: This paper develops a model-free sequential test for conditional independence. The proposed test allows researchers to analyze an incoming i.i.d. data stream with any arbitrary dependency structure, and safely conclude whether a feature is conditionally associated with the response under study. We allow the processing of data points online as soon as they arrive and stop data acquisition once significant results are detected while rigorously controlling the type-I error rate. Our test can work with any sophisticated machine learning algorithm to enhance data efficiency to the extent possible. The developed method is inspired by two statistical frameworks. The first is the model-X conditional randomization test, a test for conditional independence that is valid in offline settings where the sample size is fixed in advance. The second is testing by betting, a "game-theoretic" approach for sequential hypothesis testing. We conduct synthetic experiments to demonstrate the advantage of our test over out-of-the-box sequential tests that account for the multiplicity of tests in the time horizon, and demonstrate the practicality of our proposal by applying it to real-world tasks.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.