Vanishing 2-Qubit Gates with Non-Simplification ZX-Rules

Authors: Ryan Krueger

arXiv: 2209.06874v1 - DOI (quant-ph)
MSc Dissertation, supervised by Aleks Kissinger

Abstract: Traditional quantum circuit optimization is performed directly at the circuit level. Alternatively, a quantum circuit can be translated to a ZX-diagram which can be simplified using the rules of the ZX-calculus, after which a simplified circuit can be extracted. However, the best-known extraction procedures can drastically increase the number of 2-qubit gates. In this work, we take advantage of the fact that local changes in a ZX-diagram can drastically affect the complexity of the extracted circuit. We use a pair of congruences (i.e., non-simplification rewrite rules) based on the graph-theoretic notions of local complementation and pivoting to generate local variants of a simplified ZX-diagram. We explore the space of equivalent ZX-diagrams generated by these congruences using simulated annealing and genetic algorithms to obtain a simplified circuit with fewer 2-qubit gates. On randomly generated circuits, our method can outperform state-of-the-art optimization techniques for low-qubit (<10) circuits. On a set of previously reported benchmark circuits with <=14 qubits, our method outperforms off-the-shelf methods in 87% of cases, consistently reducing overall circuit complexity by an additional ~15-30% and eliminating up to 46% of 2-qubit gates. These preliminary results serve as a proof-of-concept for a new circuit optimization strategy in the ZX-calculus.

Submitted to arXiv on 14 Sep. 2022

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.