UnderPressure: Deep Learning for Foot Contact Detection, Ground Reaction Force Estimation and Footskate Cleanup

Authors: Lucas Mourot, Ludovic Hoyet, François Le Clerc, Pierre Hellier

14 pages, 10 figures, 4 tables

Abstract: Human motion synthesis and editing are essential to many applications like film post-production. However, they often introduce artefacts in motions, which can be detrimental to the perceived realism. In particular, footskating is a frequent and disturbing artefact requiring foot contacts knowledge to be cleaned up. Current approaches to obtain foot contact labels rely either on unreliable threshold-based heuristics or on tedious manual annotation. In this article, we address foot contact label detection from motion with a deep learning. To this end, we first publicly release UnderPressure, a novel motion capture database labelled with pressure insoles data serving as reliable knowledge of foot contact with the ground. Then, we design and train a deep neural network to estimate ground reaction forces exerted on the feet from motion data and then derive accurate foot contact labels. The evaluation of our model shows that we significantly outperform heuristic approaches based on height and velocity thresholds and that our approach is much more robust on motion sequences suffering from perturbations like noise or footskate. We further propose a fully automatic workflow for footskate cleanup: foot contact labels are first derived from estimated ground reaction forces. Then, footskate is removed by solving foot constraints through an optimisation-based inverse kinematics (IK) approach that ensures consistency with the estimated ground reaction forces. Beyond footskate cleanup, both the database and the method we propose could help to improve many approaches based on foot contact labels or ground reaction forces, including inverse dynamics problems like motion reconstruction and learning of deep motion models in motion synthesis or character animation. Our implementation, pre-trained model as well as links to database can be found at https://github.com/InterDigitalInc/UnderPressure.

Submitted to arXiv on 09 Aug. 2022

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.