Classifying COVID-19 vaccine narratives
Authors: Yue Li (University of Sheffield), Carolina Scarton (University of Sheffield), Xingyi Song (University of Sheffield), Kalina Bontcheva (University of Sheffield)
Abstract: COVID-19 vaccine hesitancy is widespread, despite governments' information campaigns and WHO efforts. One of the reasons behind this is vaccine disinformation which widely spreads in social media. In particular, recent surveys have established that vaccine disinformation is impacting negatively citizen trust in COVID-19 vaccination. At the same time, fact-checkers are struggling with detecting and tracking of vaccine disinformation, due to the large scale of social media. To assist fact-checkers in monitoring vaccine narratives online, this paper studies a new vaccine narrative classification task, which categorises COVID-19 vaccine claims into one of seven categories. Following a data augmentation approach, we first construct a novel dataset for this new classification task, focusing on the minority classes. We also make use of fact-checker annotated data. The paper also presents a neural vaccine narrative classifier that achieves an accuracy of 84% under cross-validation. The classifier is publicly available for researchers and journalists.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.