A Deep Reinforcement Learning Blind AI in DareFightingICE

Authors: Thai Van Nguyen, Xincheng Dai, Ibrahim Khan, Ruck Thawonmas, Hai V. Pham

2022 IEEE Conference on Games (CoG 2022)
License: CC BY 4.0

Abstract: This paper presents a deep reinforcement learning agent (AI) that uses sound as the input on the DareFightingICE platform at the DareFightingICE Competition in IEEE CoG 2022. In this work, an AI that only uses sound as the input is called blind AI. While state-of-the-art AIs rely mostly on visual or structured observations provided by their environments, learning to play games from only sound is still new and thus challenging. We propose different approaches to process audio data and use the Proximal Policy Optimization algorithm for our blind AI. We also propose to use our blind AI in evaluation of sound designs submitted to the competition and define two metrics for this task. The experimental results show the effectiveness of not only our blind AI but also the proposed two metrics.

Submitted to arXiv on 16 May. 2022

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.