Side-aware Meta-Learning for Cross-Dataset Listener Diagnosis with Subjective Tinnitus
Authors: Yun Li, Zhe Liu, Lina Yao, Molly Lucas, Jessica J. M. Monaghan, Yu Zhang
Abstract: With the development of digital technology, machine learning has paved the way for the next generation of tinnitus diagnoses. Although machine learning has been widely applied in EEG-based tinnitus analysis, most current models are dataset-specific. Each dataset may be limited to a specific range of symptoms, overall disease severity, and demographic attributes; further, dataset formats may differ, impacting model performance. This paper proposes a side-aware meta-learning for cross-dataset tinnitus diagnosis, which can effectively classify tinnitus in subjects of divergent ages and genders from different data collection processes. Owing to the superiority of meta-learning, our method does not rely on large-scale datasets like conventional deep learning models. Moreover, we design a subject-specific training process to assist the model in fitting the data pattern of different patients or healthy people. Our method achieves a high accuracy of 73.8\% in the cross-dataset classification. We conduct an extensive analysis to show the effectiveness of side information of ears in enhancing model performance and side-aware meta-learning in improving the quality of the learned features.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.