NeuS: Neutral Multi-News Summarization for Mitigating Framing Bias
Authors: Nayeon Lee, Yejin Bang, Tiezheng Yu, Andrea Madotto, Pascale Fung
Abstract: Media framing bias can lead to increased political polarization, and thus, the need for automatic mitigation methods is growing. We propose a new task, a neutral summary generation from multiple news headlines of the varying political spectrum, to facilitate balanced and unbiased news reading. In this paper, we first collect a new dataset, obtain some insights about framing bias through a case study, and propose a new effective metric and models for the task. Lastly, we conduct experimental analyses to provide insights about remaining challenges and future directions. One of the most interesting observations is that generation models can hallucinate not only factually inaccurate or unverifiable content, but also politically biased content.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.