Evaluation of Automatic Text Summarization using Synthetic Facts

Authors: Jay Ahn (California Polytechnic State University, San Luis Obispo), Foaad Khosmood (California Polytechnic State University, San Luis Obispo)

License: CC BY 4.0

Abstract: Despite some recent advances, automatic text summarization remains unreliable, elusive, and of limited practical use in applications. Two main problems with current summarization methods are well known: evaluation and factual consistency. To address these issues, we propose a new automatic reference-less text summarization evaluation system that can measure the quality of any text summarization model with a set of generated facts based on factual consistency, comprehensiveness, and compression rate. As far as we know, our evaluation system is the first system that measures the overarching quality of the text summarization models based on factuality, information coverage, and compression rate.

Submitted to arXiv on 11 Apr. 2022

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.