Adversarial Machine Learning Attacks Against Video Anomaly Detection Systems
Authors: Furkan Mumcu, Keval Doshi, Yasin Yilmaz
Abstract: Anomaly detection in videos is an important computer vision problem with various applications including automated video surveillance. Although adversarial attacks on image understanding models have been heavily investigated, there is not much work on adversarial machine learning targeting video understanding models and no previous work which focuses on video anomaly detection. To this end, we investigate an adversarial machine learning attack against video anomaly detection systems, that can be implemented via an easy-to-perform cyber-attack. Since surveillance cameras are usually connected to the server running the anomaly detection model through a wireless network, they are prone to cyber-attacks targeting the wireless connection. We demonstrate how Wi-Fi deauthentication attack, a notoriously easy-to-perform and effective denial-of-service (DoS) attack, can be utilized to generate adversarial data for video anomaly detection systems. Specifically, we apply several effects caused by the Wi-Fi deauthentication attack on video quality (e.g., slow down, freeze, fast forward, low resolution) to the popular benchmark datasets for video anomaly detection. Our experiments with several state-of-the-art anomaly detection models show that the attackers can significantly undermine the reliability of video anomaly detection systems by causing frequent false alarms and hiding physical anomalies from the surveillance system.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.