Givens QR Decomposition over Relational Databases

Authors: Dan Olteanu, Nils Vortmeier, Đorđe Živanović

Abstract: This paper introduces Figaro, an algorithm for computing the upper-triangular matrix in the QR decomposition of the matrix defined by the natural join over a relational database. The QR decomposition lies at the core of many linear algebra techniques and their machine learning applications, including: the matrix inverse; the least squares; the singular value decomposition; eigenvalue problems; and the principal component analysis. Figaro's main novelty is that it pushes the QR decomposition past the join. This leads to several desirable properties. For acyclic joins, it takes time linear in the database size and independent of the join size. Its execution is equivalent to the application of a sequence of Givens rotations proportional to the join size. Its number of rounding errors relative to the classical QR decomposition algorithms is on par with the input size relative to the join size. In experiments with real-world and synthetic databases, Figaro outperforms both in runtime performance and accuracy the LAPACK libraries openblas and Intel MKL by a factor proportional to the gap between the join output and input sizes.

Submitted to arXiv on 01 Apr. 2022

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.