Intelligent Systematic Investment Agent: an ensemble of deep learning and evolutionary strategies

Authors: Prasang Gupta, Shaz Hoda, Anand Rao

19 pages, 10 figures
License: CC BY 4.0

Abstract: Machine learning driven trading strategies have garnered a lot of interest over the past few years. There is, however, limited consensus on the ideal approach for the development of such trading strategies. Further, most literature has focused on trading strategies for short-term trading, with little or no focus on strategies that attempt to build long-term wealth. Our paper proposes a new approach for developing long-term investment strategies using an ensemble of evolutionary algorithms and a deep learning model by taking a series of short-term purchase decisions. Our methodology focuses on building long-term wealth by improving systematic investment planning (SIP) decisions on Exchange Traded Funds (ETF) over a period of time. We provide empirical evidence of superior performance (around 1% higher returns) using our ensemble approach as compared to the traditional daily systematic investment practice on a given ETF. Our results are based on live trading decisions made by our algorithm and executed on the Robinhood trading platform.

Submitted to arXiv on 24 Mar. 2022

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.