AI Technical Considerations: Data Storage, Cloud usage and AI Pipeline

Authors: P. M. A van Ooijen, Erfan Darzidehkalani, Andre Dekker

License: CC BY 4.0

Abstract: Artificial intelligence (AI), especially deep learning, requires vast amounts of data for training, testing, and validation. Collecting these data and the corresponding annotations requires the implementation of imaging biobanks that provide access to these data in a standardized way. This requires careful design and implementation based on the current standards and guidelines and complying with the current legal restrictions. However, the realization of proper imaging data collections is not sufficient to train, validate and deploy AI as resource demands are high and require a careful hybrid implementation of AI pipelines both on-premise and in the cloud. This chapter aims to help the reader when technical considerations have to be made about the AI environment by providing a technical background of different concepts and implementation aspects involved in data storage, cloud usage, and AI pipelines.

Submitted to arXiv on 20 Jan. 2022

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.