Goal-Conditioned Reinforcement Learning: Problems and Solutions

Authors: Minghuan Liu, Menghui Zhu, Weinan Zhang

License: CC BY-NC-ND 4.0

Abstract: Goal-conditioned reinforcement learning (GCRL), related to a set of complex RL problems, trains an agent to achieve different goals under particular scenarios. Compared to the standard RL solutions that learn a policy solely depending on the states or observations, GCRL additionally requires the agent to make decisions according to different goals. In this survey, we provide a comprehensive overview of the challenges and algorithms for GCRL. Firstly, we answer what the basic problems are studied in this field. Then, we explain how goals are represented and present how existing solutions are designed from different points of view. Finally, we make the conclusion and discuss potential future prospects that recent researches focus on.

Submitted to arXiv on 20 Jan. 2022

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.