Assemble Foundation Models for Automatic Code Summarization

Authors: Jian Gu, Pasquale Salza, Harald C. Gall

12 pages, 2 figures, 8 tables, accepted by SANER 2022, the camera-ready version

Abstract: Automatic code summarization is beneficial to daily software development since it could help reduce the requirement of manual writing. Currently, artificial intelligence is undergoing a paradigm shift. The foundation models pretrained on massive data and finetuned to downstream tasks surpass specially customized models. This trend inspired us to consider reusing foundation models instead of learning from scratch. Thereby, we propose a flexible and robust approach for automatic code summarization, based on neural models. We assemble available foundation models, such as CodeBERT and GPT-2, into a single neural model named AdaMo. Moreover, we utilize Gaussian noise as the simulation of contextual information to optimize the latent representation. Furthermore, we introduce two adaptive schemes from the perspective of knowledge transfer, namely continuous pretraining and intermediate finetuning, and design intermediate stage tasks for general sequence-to-sequence learning. Finally, we evaluate AdaMo against a benchmark dataset for code summarization, by comparing it with state-of-the-art models.

Submitted to arXiv on 13 Jan. 2022

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.