HP-GNN: Generating High Throughput GNN Training Implementation on CPU-FPGA Heterogeneous Platform

Authors: Yi-Chien Lin, Bingyi Zhang, Viktor Prasanna

Abstract: Graph Neural Networks (GNNs) have shown great success in many applications such as recommendation systems, molecular property prediction, traffic prediction, etc. Recently, CPU-FPGA heterogeneous platforms have been used to accelerate many applications by exploiting customizable data path and abundant user-controllable on-chip memory resources of FPGAs. Yet, accelerating and deploying GNN training on such platforms requires not only expertise in hardware design but also substantial development efforts. We propose HP-GNN, a novel framework that generates high throughput GNN training implementations on a given CPU-FPGA platform that can benefit both application developers and machine learning researchers. HP-GNN takes GNN training algorithms, GNN models as the inputs, and automatically performs hardware mapping onto the target CPU-FPGA platform. HP-GNN consists of: (1) data layout and internal representation that reduce the memory traffic and random memory accesses; (2) optimized hardware templates that support various GNN models; (3) a design space exploration engine for automatic hardware mapping; (4) high-level application programming interfaces (APIs) that allows users to specify GNN training with only a handful of lines of code. To evaluate HP-GNN, we experiment with two well-known sampling-based GNN training algorithms and two GNN models. For each training algorithm and model, HP-GNN generates implementation on a state-of-the-art CPU-FPGA platform. Compared with CPU-only and CPU-GPU platforms, experimental results show that the generated implementations achieve $55.67\times$ and $2.17\times$ speedup on the average, respectively. Compared with the state-of-the-art GNN training implementations, HP-GNN achieves up to $4.45\times$ speedup.

Submitted to arXiv on 22 Dec. 2021

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.