Natural language processing to identify lupus nephritis phenotype in electronic health records

Authors: Yu Deng, Jennifer A. Pacheco, Anh Chung, Chengsheng Mao, Joshua C. Smith, Juan Zhao, Wei-Qi Wei, April Barnado, Chunhua Weng, Cong Liu, Adam Cordon, Jingzhi Yu, Yacob Tedla, Abel Kho, Rosalind Ramsey-Goldman, Theresa Walunas, Yuan Luo

License: CC BY 4.0

Abstract: Systemic lupus erythematosus (SLE) is a rare autoimmune disorder characterized by an unpredictable course of flares and remission with diverse manifestations. Lupus nephritis, one of the major disease manifestations of SLE for organ damage and mortality, is a key component of lupus classification criteria. Accurately identifying lupus nephritis in electronic health records (EHRs) would therefore benefit large cohort observational studies and clinical trials where characterization of the patient population is critical for recruitment, study design, and analysis. Lupus nephritis can be recognized through procedure codes and structured data, such as laboratory tests. However, other critical information documenting lupus nephritis, such as histologic reports from kidney biopsies and prior medical history narratives, require sophisticated text processing to mine information from pathology reports and clinical notes. In this study, we developed algorithms to identify lupus nephritis with and without natural language processing (NLP) using EHR data. We developed four algorithms: a rule-based algorithm using only structured data (baseline algorithm) and three algorithms using different NLP models. The three NLP models are based on regularized logistic regression and use different sets of features including positive mention of concept unique identifiers (CUIs), number of appearances of CUIs, and a mixture of three components respectively. The baseline algorithm and the best performed NLP algorithm were external validated on a dataset from Vanderbilt University Medical Center (VUMC). Our best performing NLP model incorporating features from both structured data, regular expression concepts, and mapped CUIs improved F measure in both the NMEDW (0.41 vs 0.79) and VUMC (0.62 vs 0.96) datasets compared to the baseline lupus nephritis algorithm.

Submitted to arXiv on 20 Dec. 2021

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.