FinRL-Meta: A Universe of Near-Real Market Environments for Data-Driven Deep Reinforcement Learning in Quantitative Finance

Authors: Xiao-Yang Liu, Jingyang Rui, Jiechao Gao, Liuqing Yang, Hongyang Yang, Zhaoran Wang, Christina Dan Wang, Jian Guo

arXiv: 2112.06753v2 - DOI (q-fin.TR)
Workshop on Data Centric AI, 35th Conference on Neural Information Processing Systems (NeurIPS 2021)

Abstract: Deep reinforcement learning (DRL) has shown huge potentials in building financial market simulators recently. However, due to the highly complex and dynamic nature of real-world markets, raw historical financial data often involve large noise and may not reflect the future of markets, degrading the fidelity of DRL-based market simulators. Moreover, the accuracy of DRL-based market simulators heavily relies on numerous and diverse DRL agents, which increases demand for a universe of market environments and imposes a challenge on simulation speed. In this paper, we present a FinRL-Meta framework that builds a universe of market environments for data-driven financial reinforcement learning. First, FinRL-Meta separates financial data processing from the design pipeline of DRL-based strategy and provides open-source data engineering tools for financial big data. Second, FinRL-Meta provides hundreds of market environments for various trading tasks. Third, FinRL-Meta enables multiprocessing simulation and training by exploiting thousands of GPU cores. Our codes are available online at https://github.com/AI4Finance-Foundation/FinRL-Meta.

Submitted to arXiv on 13 Dec. 2021

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.