Predicting Airbnb Rental Prices Using Multiple Feature Modalities
Authors: Aditya Ahuja, Aditya Lahiri, Aniruddha Das
Abstract: Figuring out the price of a listed Airbnb rental is an important and difficult task for both the host and the customer. For the former, it can enable them to set a reasonable price without compromising on their profits. For the customer, it helps understand the key drivers for price and also provides them with similarly priced places. This price prediction regression task can also have multiple downstream uses, such as in recommendation of similar rentals based on price. We propose to use geolocation, temporal, visual and natural language features to create a reliable and accurate price prediction algorithm.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.