Jigsaw: Large Language Models meet Program Synthesis

Authors: Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh Parthasarathy, Sriram Rajamani, Rahul Sharma

Accepted to ICSE'22
License: CC BY 4.0

Abstract: Large pre-trained language models such as GPT-3, Codex, and Google's language model are now capable of generating code from natural language specifications of programmer intent. We view these developments with a mixture of optimism and caution. On the optimistic side, such large language models have the potential to improve productivity by providing an automated AI pair programmer for every programmer in the world. On the cautionary side, since these large language models do not understand program semantics, they offer no guarantees about quality of the suggested code. In this paper, we present an approach to augment these large language models with post-processing steps based on program analysis and synthesis techniques, that understand the syntax and semantics of programs. Further, we show that such techniques can make use of user feedback and improve with usage. We present our experiences from building and evaluating such a tool jigsaw, targeted at synthesizing code for using Python Pandas API using multi-modal inputs. Our experience suggests that as these large language models evolve for synthesizing code from intent, jigsaw has an important role to play in improving the accuracy of the systems.

Submitted to arXiv on 06 Dec. 2021

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.