Smart IoT-Biofloc water management system using Decision regression tree
Authors: Samsil Arefin Mozumder, A S M Sharifuzzaman Sagar
Abstract: The conventional fishing industry has several difficulties: water contamination, temperature instability, nutrition, area, expense, etc. In fish farming, Biofloc technology turns traditional farming into a sophisticated infrastructure that enables the utilization of leftover food by turning it into bacterial biomass. The purpose of our study is to propose an intelligent IoT Biofloc system that improves efficiency and production. This article introduced a system that gathers data from sensors, store data in the cloud, analyses it using a machine learning model such as a Decision regression tree model to predict the water condition, and provides real-time monitoring through an android app. The proposed system has achieved a satisfactory accuracy of 79% during the experiment.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.