Practical Scheduling for Real-World Serverless Computing

Authors: Kostis Kaffes, Neeraja J. Yadwadkar, Christos Kozyrakis

Abstract: Serverless computing has seen rapid growth due to the ease-of-use and cost-efficiency it provides. However, function scheduling, a critical component of serverless systems, has been overlooked. In this paper, we take a first-principles approach toward designing a scheduler that caters to the unique characteristics of serverless functions as seen in real-world deployments. We first create a taxonomy of scheduling policies along three dimensions. Next, we use simulation to explore the scheduling policy space for the function characteristics in a 14-day trace of Azure functions and conclude that frequently used features such as late binding and random load balancing are sub-optimal for common execution time distributions and load ranges. We use these insights to design Hermes, a scheduler for serverless functions with three key characteristics. First, to avoid head-of-line blocking due to high function execution time variability, Hermes uses a combination of early binding and processor sharing for scheduling at individual worker machines. Second, Hermes uses a hybrid load balancing approach that improves consolidation at low load while employing least-loaded balancing at high load to retain high performance. Third, Hermes is both load and locality-aware, reducing the number of cold starts compared to pure load-based policies. We implement Hermes for Apache OpenWhisk and demonstrate that, for the case of the function patterns observed both in the Azure and in other real-world traces, it achieves up to 85% lower function slowdown and 60% higher throughput compared to existing policies.

Submitted to arXiv on 14 Nov. 2021

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.