CheerBots: Chatbots toward Empathy and Emotionusing Reinforcement Learning
Authors: Jiun-Hao Jhan, Chao-Peng Liu, Shyh-Kang Jeng, Hung-Yi Lee
Abstract: Apart from the coherence and fluency of responses, an empathetic chatbot emphasizes more on people's feelings. By considering altruistic behaviors between human interaction, empathetic chatbots enable people to get a better interactive and supportive experience. This study presents a framework whereby several empathetic chatbots are based on understanding users' implied feelings and replying empathetically for multiple dialogue turns. We call these chatbots CheerBots. CheerBots can be retrieval-based or generative-based and were finetuned by deep reinforcement learning. To respond in an empathetic way, we develop a simulating agent, a Conceptual Human Model, as aids for CheerBots in training with considerations on changes in user's emotional states in the future to arouse sympathy. Finally, automatic metrics and human rating results demonstrate that CheerBots outperform other baseline chatbots and achieves reciprocal altruism. The code and the pre-trained models will be made available.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.