On deploying the Artificial Sport Trainer into practice

Authors: Iztok Fister Jr., Iztok Fister, Andres Iglesias, Akemi Galvez, Suash Deb, Dušan Fister

Abstract: Computational Intelligence methods for automatic generation of sport training plans in individual sport disciplines have achieved a mature phase. In order to confirm their added value, they have been deployed into practice. As a result, several methods have been developed for generating well formulated training plans on computers automatically that, typically, depend on the collection of past sport activities. However, monitoring the realization of the performed training sessions still represents a bottleneck in automating the process of sport training as a whole. The objective of this paper is to present a new low-cost and efficient embedded device for monitoring the realization of sport training sessions that is dedicated to monitor cycling training sessions. We designed and developed a new bike computer, i.e. the AST-Monitor, that can be mounted easily on almost every bicycle. The aforementioned bike computer is based on the Raspberry Pi device that supports different external sensors for capturing the data during the realization of sport training sessions. An adjusted GUI tailored to the needs of athletes is developed, along with the hardware. The proof of concept study, using the AST-Monitor in practice, revealed the potential of the proposed solution for monitoring of realized sport training sessions automatically. The new device also opens the door for the future utilization of Artificial Intelligence in a wide variety of sports.

Submitted to arXiv on 03 Sep. 2021

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.