Process parameter optimization of Friction Stir Welding on 6061AA using Supervised Machine Learning Regression-based Algorithms

Authors: Akshansh Mishra, Eyob Messele Sefene, Assefa Asmare Tsegaw

License: CC BY-NC-SA 4.0

Abstract: The highest strength-to-weight ratio criterion has fascinated curiosity increasingly in virtually all areas where heft reduction is indispensable. Lightweight materials and their joining processes are also a recent point of research demands in the manufacturing industries. Friction Stir Welding (FSW) is one of the recent advancements for joining materials without adding any third material (filler rod) and joining below the melting point of the parent material. The process is widely used for joining similar and dissimilar metals, especially lightweight non-ferrous materials like aluminum, copper, and magnesium alloys. This paper presents verdicts of optimum process parameters on attaining enhanced mechanical properties of the weld joint. The experiment was conducted on a 5 mm 6061 aluminum alloy sheet. Process parameters; tool material, rotational speed, traverse speed, and axial forces were utilized. Mechanical properties of the weld joint are examined employing a tensile test, and the maximum joint strength efficiency was reached 94.2%. Supervised Machine Learning based Regression algorithms such as Decision Trees, Random Forest, and Gradient Boosting Algorithm were used. The results showed that the Random Forest algorithm yielded highest coefficient of determination value of 0.926 which means it gives a best fit in comparison to other algorithms.

Submitted to arXiv on 12 Aug. 2021

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.