Using Biological Variables and Social Determinants to Predict Malaria and Anemia among Children in Senegal

Authors: Boubacar Sow, Hiroki Suguri, Hamid Mukhtar, Hafiz Farooq Ahmad

License: CC BY 4.0

Abstract: Integrating machine learning techniques in healthcare becomes very common nowadays, and it contributes positively to improving clinical care and health decisions planning. Anemia and malaria are two life-threatening diseases in Africa that affect the red blood cells and reduce hemoglobin production. This paper focuses on analyzing child health data in Senegal using four machine learning algorithms in Python: KNN, Random Forests, SVM, and Na\"ive Bayes. Our task aims to investigate large-scale data from The Demographic and Health Survey (DHS) and to find out hidden information for anemia and malaria. We present two classification models for the two blood disorders using biological variables and social determinants. The findings of this research will contribute to improving child healthcare in Senegal by eradicating anemia and malaria, and decreasing the child mortality rate.

Submitted to arXiv on 08 Aug. 2021

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.