Quantum Neural Networks: Concepts, Applications, and Challenges

Authors: Yunseok Kwak, Won Joon Yun, Soyi Jung, Joongheon Kim

arXiv: 2108.01468v1 - DOI (quant-ph)
License: CC BY 4.0

Abstract: Quantum deep learning is a research field for the use of quantum computing techniques for training deep neural networks. The research topics and directions of deep learning and quantum computing have been separated for long time, however by discovering that quantum circuits can act like artificial neural networks, quantum deep learning research is widely adopted. This paper explains the backgrounds and basic principles of quantum deep learning and also introduces major achievements. After that, this paper discusses the challenges of quantum deep learning research in multiple perspectives. Lastly, this paper presents various future research directions and application fields of quantum deep learning.

Submitted to arXiv on 02 Aug. 2021

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.