An Analysis of Reinforcement Learning for Malaria Control

Authors: Ndivhuwo Makondo, Arinze Lawrence Folarin, Simphiwe Nhlahla Zitha, Sekou Lionel Remy

27 pages including appendix and references. Submitted to the Journal of Artificial Intelligence Research (JAIR)

Abstract: Previous work on policy learning for Malaria control has often formulated the problem as an optimization problem assuming the objective function and the search space have a specific structure. The problem has been formulated as multi-armed bandits, contextual bandits and a Markov Decision Process in isolation. Furthermore, an emphasis is put on developing new algorithms specific to an instance of Malaria control, while ignoring a plethora of simpler and general algorithms in the literature. In this work, we formally study the formulation of Malaria control and present a comprehensive analysis of several formulations used in the literature. In addition, we implement and analyze several reinforcement learning algorithms in all formulations and compare them to black box optimization. In contrast to previous work, our results show that simple algorithms based on Upper Confidence Bounds are sufficient for learning good Malaria policies, and tend to outperform their more advanced counterparts on the malaria OpenAI Gym environment.

Submitted to arXiv on 19 Jul. 2021

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.