Partially fake it till you make it: mixing real and fake thermal images for improved object detection

Authors: Francesco Bongini, Lorenzo Berlincioni, Marco Bertini, Alberto Del Bimbo

License: CC BY-SA 4.0

Abstract: In this paper we propose a novel data augmentation approach for visual content domains that have scarce training datasets, compositing synthetic 3D objects within real scenes. We show the performance of the proposed system in the context of object detection in thermal videos, a domain where 1) training datasets are very limited compared to visible spectrum datasets and 2) creating full realistic synthetic scenes is extremely cumbersome and expensive due to the difficulty in modeling the thermal properties of the materials of the scene. We compare different augmentation strategies, including state of the art approaches obtained through RL techniques, the injection of simulated data and the employment of a generative model, and study how to best combine our proposed augmentation with these other techniques.Experimental results demonstrate the effectiveness of our approach, and our single-modality detector achieves state-of-the-art results on the FLIR ADAS dataset.

Submitted to arXiv on 25 Jun. 2021

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.