Continual 3D Convolutional Neural Networks for Real-time Processing of Videos

Authors: Lukas Hedegaard, Alexandros Iosifidis

ECCV 2022
22 pages, 9 figures, 7 tables

Abstract: We introduce Continual 3D Convolutional Neural Networks (Co3D CNNs), a new computational formulation of spatio-temporal 3D CNNs, in which videos are processed frame-by-frame rather than by clip. In online tasks demanding frame-wise predictions, Co3D CNNs dispense with the computational redundancies of regular 3D CNNs, namely the repeated convolutions over frames, which appear in overlapping clips. We show that Continual 3D CNNs can reuse preexisting 3D-CNN weights to reduce the per-prediction floating point operations (FLOPs) in proportion to the temporal receptive field while retaining similar memory requirements and accuracy. This is validated with multiple models on Kinetics-400 and Charades with remarkable results: CoX3D models attain state-of-the-art complexity/accuracy trade-offs on Kinetics-400 with 12.1-15.3x reductions of FLOPs and 2.3-3.8% improvements in accuracy compared to regular X3D models while reducing peak memory consumption by up to 48%. Moreover, we investigate the transient response of Co3D CNNs at start-up and perform extensive benchmarks of on-hardware processing characteristics for publicly available 3D CNNs.

Submitted to arXiv on 31 May. 2021

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.