Bring Your Own Codegen to Deep Learning Compiler
Authors: Zhi Chen, Cody Hao Yu, Trevor Morris, Jorn Tuyls, Yi-Hsiang Lai, Jared Roesch, Elliott Delaye, Vin Sharma, Yida Wang
Abstract: Deep neural networks (DNNs) have been ubiquitously applied in many applications, and accelerators are emerged as an enabler to support the fast and efficient inference tasks of these applications. However, to achieve high model coverage with high performance, each accelerator vendor has to develop a full compiler stack to ingest, optimize, and execute the DNNs. This poses significant challenges in the development and maintenance of the software stack. In addition, the vendors have to contiguously update their hardware and/or software to cope with the rapid evolution of the DNN model architectures and operators. To address these issues, this paper proposes an open source framework that enables users to only concentrate on the development of their proprietary code generation tools by reusing as many as possible components in the existing deep learning compilers. Our framework provides users flexible and easy-to-use interfaces to partition their models into segments that can be executed on "the best" processors to take advantage of the powerful computation capability of accelerators. Our case study shows that our framework has been deployed in multiple commercial vendors' compiler stacks with only a few thousand lines of code.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.