Detection of Fake Users in SMPs Using NLP and Graph Embeddings

Authors: Manojit Chakraborty, Shubham Das, Radhika Mamidi

5 pages, 3 figures
License: CC BY 4.0

Abstract: Social Media Platforms (SMPs) like Facebook, Twitter, Instagram etc. have large user base all around the world that generates huge amount of data every second. This includes a lot of posts by fake and spam users, typically used by many organisations around the globe to have competitive edge over others. In this work, we aim at detecting such user accounts in Twitter using a novel approach. We show how to distinguish between Genuine and Spam accounts in Twitter using a combination of Graph Representation Learning and Natural Language Processing techniques.

Submitted to arXiv on 27 Apr. 2021

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.