LaTeX-Numeric: Language-agnostic Text attribute eXtraction for E-commerce Numeric Attributes

Authors: Kartik Mehta, Ioana Oprea, Nikhil Rasiwasia

NAACL 2021 Industry Track

Abstract: In this paper, we present LaTeX-Numeric - a high-precision fully-automated scalable framework for extracting E-commerce numeric attributes from product text like product description. Most of the past work on attribute extraction is not scalable as they rely on manually curated training data, either with or without the use of active learning. We rely on distant supervision for training data generation, removing dependency on manual labels. One issue with distant supervision is that it leads to incomplete training annotation due to missing attribute values while matching. We propose a multi-task learning architecture to deal with missing labels in the training data, leading to F1 improvement of 9.2% for numeric attributes over single-task architecture. While multi-task architecture benefits both numeric and non-numeric attributes, we present automated techniques to further improve the numeric attributes extraction models. Numeric attributes require a list of units (or aliases) for better matching with distant supervision. We propose an automated algorithm for alias creation using product text and attribute values, leading to a 20.2% F1 improvement. Extensive experiments on real world dataset for 20 numeric attributes across 5 product categories and 3 English marketplaces show that LaTeX-Numeric achieves a high F1-score, without any manual intervention, making it suitable for practical applications. Finally, we show that the improvements are language-agnostic and LaTeX-Numeric achieves 13.9% F1 improvement for 3 Romance languages.

Submitted to arXiv on 19 Apr. 2021

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.