FUDGE: Controlled Text Generation With Future Discriminators

Authors: Kevin Yang, Dan Klein

NAACL 2021

Abstract: We propose Future Discriminators for Generation (FUDGE), a flexible and modular method for controlled text generation. Given a pre-existing model G for generating text from a distribution of interest, FUDGE enables conditioning on a desired attribute a (for example, formality) while requiring access only to G's output logits. FUDGE learns an attribute predictor operating on a partial sequence, and uses this predictor's outputs to adjust G's original probabilities. We show that FUDGE models terms corresponding to a Bayesian decomposition of the conditional distribution of G given attribute a. Moreover, FUDGE can easily compose predictors for multiple desired attributes. We evaluate FUDGE on three tasks -- couplet completion in poetry, topic control in language generation, and formality change in machine translation -- and observe gains in all three tasks.

Submitted to arXiv on 12 Apr. 2021

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.