Modelling and Analysis of Magnetic Fields from Skeletal Muscle for Valuable Physiological Measurements
Authors: Siming Zuo, Kianoush Nazarpour, Dario Farina, Philip Broser, Hadi Heidari
Abstract: MagnetoMyoGraphy (MMG) is a method of studying muscle function via weak magnetic fields generated from human active organs and tissues. The correspondence between MMG and electromyography means directly derived from the Maxwell-Amp\`ere law. Here, upon briefly describing the principles of voltage distribution inside skeletal muscles due to the electrical stimulation, we provide a protocol to determine the effects of the magnetic field generated from a time-changing action potential propagating in a group of skeletal muscle cells. The position-dependent and the magnetic field behaviour on account of the different currents in muscle fibres are performed in temporal, spectral and spatial domains. The procedure covers identification of the fibre subpopulations inside the fascicles of a given nerve section, characterization of soleus skeletal muscle currents, check of axial intracellular currents, calculation of the generated magnetic field ultimately. We expect this protocol to take approximately 2-3 hours to complete for the whole finite-element analysis.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.